
Anarchy, Stability, and Utopia:
Creating Better Matchings

Elliot Anshelevich1, Sanmay Das1, and Yonatan Naamad1

Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180
{eanshel,sanmay,naamay2}@cs.rpi.edu.

Abstract. We consider the loss in social welfare caused by individual
rationality in matching scenarios. We give both theoretical and exper-
imental results comparing stable matchings with socially optimal ones,
as well as studying the convergence of various natural algorithms to sta-
ble matchings. Our main goal is to design mechanisms that incentivize
agents to participate in matchings that are socially desirable. We show
that theoretically, the loss in social welfare caused by strategic behavior
can be substantial. However, under some natural distributions of utilities,
we show experimentally that stable matchings attain close to the optimal
social welfare. Furthermore, for certain graph structures, simple greedy
algorithms for partner-switching (some without convergence guarantees)
converge to stability remarkably quickly in expectation. Even when sta-
ble matchings are significantly socially suboptimal, slight changes in in-
centives can provide good solutions. We derive conditions for the exis-
tence of approximately stable matchings that are also close to socially
optimal, which demonstrates that adding small switching costs can make
socially optimal matchings stable.

1 Introduction

This paper investigates the social quality of stable matchings. The theory of
stable matching has received a tremendous amount of attention because of its
many applications, including matching graduating medical students to residency
programs [1], and matching kidney donors with recipients [2]. Most of the work
on stable matching has assumed that the agents being matched have some pref-
erence ordering on who they would like to be matched with, without assigning a
concrete utility for agent i being matched with agent j [3–5, inter alia]. This is
natural, because stability as a concept does not need the stronger requirement
of ascribing utilities to outcomes: it only needs the ranking of matchings from
the perspective of every agent.

Matching problems, however, often bring with them outcomes that need to
be evaluated in terms of cardinal utility. This occurs, for example, in pair pro-
gramming, a central practice of the software engineering methodology known as
Extreme Programming [6]. The utility of a matching is a function of the produc-
tivity of a pair of programmers working together. In kidney exchange, as well



2

as many other stable matching scenarios, the goal is not only to form stable
matchings, but also to form a matching with high overall utility.

The properties of matching mechanisms determine the utilities received by
agents in these situations. A good mechanism for kidney exchange could make
donors happier with their decision to donate while arranging the best possible
matches for recipients. A good mechanism for pairing programmers would lead
to the best possible programming productivity for their employer. Inevitably,
there is a tradeoff between stable matchings, which are pairwise (or groupwise)
rational, and socially optimal matchings (for our purposes, for the rest of this
paper we assume simple additive social utilities, so that the socially optimal
matching is the one that maximizes the sum of utilities received by each in-
dividual). The central question of mechanism design for matching markets is
how to get people into “good” matchings, however “good” is defined. Almost
all the work on matching mechanism design has focused on engineering stable
matchings. This work has met with significant large-scale success in applications
like matching graduating medical students to residency programs, and matching
students to public high schools [7, 1]. Some of this work, especially recent work
on designing high school student matches, also explicitly seeks to realize the best
matchings for one side of the market (in the high school case, the best matchings
for students), but the notion of welfare is weak pareto-optimality among the set
of stable matches for one side of the market [8].

Our focus is on extending our understanding of matching problems in sit-
uations where we are concerned with social welfare in terms of utility, instead
of just stability and choice among stable outcomes. Several alternatives may be
available in these situations, ranging from purely centralized allocation based
on information available to a matchmaker, to purely individual decision-making
based on personal preferences. The first set of questions that arises can be di-
vided into three categories: (1) How bad are stable matchings when compared
with socially optimal ones? (2) Can agents find stable matchings on their own?
What are the outcomes of algorithms they may actually use in practice? (3) How
can we incentivize agents to participate in matchings that are socially desirable?

Our Results. We initiate an investigation of the questions described above in
the context of two-sided matchings, and give both theoretical and experimental
results. Specifically, we study the effects of different network structures and util-
ity distributions on the price of anarchy: the ratio of social utilities achieved by
stable and optimal matchings respectively. We find that in most cases the stable
matching attains close to the optimal social welfare (generally above 90%). We
characterize some situations where the price of anarchy can be more substan-
tial, and then study a potential means of incentivizing good stable matchings in
Section 5. We consider approximate stability, which corresponds to the addition
of a switching cost to the mechanism, so that an agent would have to pay in
order to deviate from the current matching. We show both theoretically and
experimentally that the addition of a small switching cost can greatly improve
the quality of stable solutions. Finally, in Section 6 we consider several greedy
algorithms for partner-switching, and show experimentally that they converge



3

quickly to stability for some simple yet natural distributions of utilities, as well
as prove convergence guarantees.

2 Matching, Stability, and Social Welfare

Matching, the process of agents forming beneficial partnerships, is one of the
most fundamental social processes. Examples of matching with self-interested
agents range from basic social activities (marriage, mate assignment [9]), to the
core of economic activity (matching employees and employers [10]), to recent in-
novations in health care (matching kidney donors and recipients [2]). The process
of matching can be extremely complex, since (1) agents can have complicated
preferences, and (2), in most social applications agents are self-interested: they
care mostly about their own welfare, and would not obey a centralized matching
algorithm unless it was to their benefit.

For this reason, the outcomes of matching processes are usually analyzed
in terms of stability, the requirement that no collection of agents could form a
group together, and become better off than they are currently [3]. For the classic
“stable marriage” problem [11], this corresponds to the lack of desire of any pair
to drop their current partners and instead match with each other. While stable
matchings may be natural outcomes, desirable for various reasons, there are few
guarantees on the quality and social welfare of stable matchings. Most research
on matchings of self-interested agents has focused on (1) defining outcomes with
stability as the goal, (2) computing stable outcomes and understanding their
properties (ranging from the seminal work of Gale and Shapley [11] to algo-
rithms that try and compute “optimal” matches, for example by minimizing the
average preference ranking of matched partners [12]), and (3) designing truthful
preference-revealing mechanisms (such as in public school matches [8]). Ques-
tions about the social welfare of stable matchings have been less studied.1 There
has been almost no research on constructing socially desirable stable outcomes,
partly because in most situations one cannot instruct self-interested agents on
what to do in order to engineer such outcomes, since an agent will only follow
instructions if it benefits them personally.

An increasing body of literature in behavioral economics and social science
(e.g. [13]), however, suggests that desirable outcomes can be achieved by giving
people a little “nudge” in certain directions, perhaps by altering their incentives
slightly, while still leaving them with freedom to choose their own actions. Small
changes that greatly improve a social system are easy to identify in some situ-
ations: for example, making 401(K) plans opt-out rather than opt-in increases
participation dramatically. Finding similar changes in matching scenarios is more
difficult because of the complexity of a system where any agent’s actions can the-
oretically affect a large number of other agents.

1 One of the desiderata for matching students with schools or medical students with
residencies can be to compute the stable matching that is best (typically) for the
students, but this is a different notion of welfare.



4

Before addressing the mechanism design question of how to achieve better
social outcomes, we first need to address the question of whether or not stable
matching can lead to substantial social losses. For this question to make sense,
we first need an objective function that measures the quality of a matching.
As mentioned in the introduction, one of the reasons why the social quality
of stable matchings is usually not addressed is because the agents in question
are assumed to have a preference ordering on their possible partners, without a
specific utility function that states how good a match would be.2 In this paper, we
are specifically concerned with contexts where every agent has a utility function,
not just a preference ordering: that is, for every possible partner v, an agent has
a value U(v) specifying how happy it would be to be matched with v. We are
especially concerned with measuring the quality of a matching in terms of social
welfare: the total sum of utilities for all the agents.

The tradeoff between stable matchings and socially optimal matchings is
quantified by the price of anarchy : the ratio between the maximum possible
social utility and the utilities of equilibrium outcomes (stable matchings). Un-
derstanding the price of anarchy is important, since it acts as a bound on the
amount of improvement in stable matchings that better mechanisms could yield.
Price of Anarchy Bounds. The price of anarchy can vary widely depending
on the problem instance and the preference structure. Figure 1 illustrates some
cases where the stable matching is highly socially suboptimal (discussed in more
detail in the next section). In two of the underlying types of graph structures, the
price of anarchy is at most two (and the bound can be tight), while in the third
the social utility of the stable matching can be arbitrarily bad compared with
the socially optimal one. But how bad are stable matchings in expectation? This
question is tackled in detail in Section 4. Empirically, we find that despite the
potentially bad worst-case behavior, across many different random distributions
of preferences and several graph structures the price of anarchy tends to be lower.
Creating Better Stable Matchings. Given the agents’ utilities, the social-
welfare maximizing matching can be computed by finding a maximum weighted
matching on a graph. We cannot just force people to accept such a matching
because of individual preferences. But what if we could suggest a good matching,
and provide some incentives for agents to go along with those matchings? This is
the subject of Section 5. We consider changing incentives to make more socially
desirable matchings become stable by adding switching costs into the system.
We show both theoretically and empirically that a small amount of incentives
can greatly affect the quality of stable matchings.
Convergence to Stability. Another natural question we ask is whether stable
matchings will arise in practical situations, where each participant does not want
to submit his or her preferences to a centralized matchmaker. Previous work

2 While there has been some work on measuring the quality of a matching by, for
example, the average preference ranking of matched partners [12], such measures
can sometimes be hard to justify. For example, for an agent A, the second choice in
its preference order might be a lot worse than its first choice, while for agent B, the
second choice might be only a little bit worse.



5

A

B D

C

1+ε

1

1

Symmetric edge-labeled
preferences

A

B D

C

1

1

1+ε

1+ε

Vertex-labeled preferences

A

B D

C0

1

∞

0

2
2

1
1

Asymmetric edge-labeled
preferences

Fig. 1. Worst-case realizations of the price of anarchy. In each case the socially optimal
matching is {(A,C), (B,D)} but the only stable matching pairs A and D.

has focused especially on randomized best response dynamics [14, 15]. We know
that simple decentralized partner switching algorithms can fail to converge to
stable matchings [14]. However, what happens in cases where the structure of
preferences obeys some extra constraints? We explore this question in Section 6.

3 The Matching Model

We are concerned with pairwise matching problems. While we focus on bipartite
graphs, (most of) our results also hold for general graphs, and in our experiments
we did not find a significant difference between the quality of matchings in
bipartite and non-bipartite graphs. We assume that each agent gains some utility
from being paired up with another agent. The utility of remaining unmatched
is assumed to be 0. We consider each agent as a vertex in a graph G, and only
agents u and v with the edge (u, v) being present in G are allowed to match
with each other. In two-sided matching scenarios, the agents can be separated
into two types, one on each side of the graph, and no edges are allowed between
agents of the same type.

We consider several different utility structures:

1. Vertex-labeled graphs: A vertex-labeled graph is defined as G = (V,E,w)
where V is the set of vertices, E is the set of (undirected) edges, and w is
a vector of weights corresponding to the vertices. When two vertices u and
v are in a matching, the agent corresponding to u receives utility w(v) and
the agent corresponding to v receives utility w(u). These graphs correspond
to a situation where being paired with agent X will yield the same utility to
any agent Y allowed to match with X, independent of the identity of Y .

2. Symmetric edge-labeled graphs: A symmetric edge-labeled graph G =
(V,E,w) is different in that the weights w correspond to edges rather than
vertices. When two vertices u and v are in a matching, the agents correspond-
ing to both u and v receive utility w({u, v}). These graphs reflect situations
where the utility received by both members of a pair is the same, perhaps



6

determined by their combined output when working together – for example,
pair programming may be judged by the productivity of the pair. Markets
with these types of utilities are called “correlated two-sided markets” in [14].

3. Asymmetric edge-labeled graphs: An asymmetric edge-labeled graph
G = (V,E,w) is the same except that edges are now directed, and the
utility received by agent u in a matching that includes the pair u, v is given
by w(u, v), while the utility received by v is given by w(v, u). This is the
most general case, in which each agent receives an unconstrained value from
each agent they may possibly be paired with.

We also consider combinations of the above models, such as when agent
u’s utility for being matched with v has a vertex-labeled component w(v), as
well as an edge-labeled component w(u, v). The types of utilities mentioned
above arise in many contexts including market sharing games [16] and distributed
caching games [17]. In the context of marriage markets, vertex-labeled graphs are
equivalent to what Das and Kamenica call sex-wide homogeneity of preferences,
and edge-labeled graphs are equivalent to what they call pairwise homogeneity
of preferences [18].

4 The Price of Anarchy

In general, the price of anarchy is the ratio between the social utility of the
(worst) equilibrium outcome of a game and the maximum social utility possible
in that game. The usual definition relates the largest social welfare achievable to
the social welfare of the worst Nash equilibrium. In the context of matching, we
move from the concept of Nash equilibrium to the concept of stable equilibrium
described above, because stable outcomes are determined by the possibility of
pairwise deviations rather than individual deviations.

The price of anarchy can vary widely depending on the problem instance
and the preference structure. Figure 1 illustrates some cases where the stable
matching is highly socially suboptimal (the price of anarchy is high) in the three
different preference settings for two-sided matching described in Section 3. Below
we present price of anarchy bounds for the three models we consider.

Observation 1 In symmetric edge-labeled graphs, the social utility of any stable
matching is at least one-half of the social utility of the optimum matching.

In other words, the price of anarchy is at most 2. The socially optimal match-
ing is simply the maximum-weight matching in this model. The above observa-
tion is a special case of Theorem 1 (see Section 5), but it can also be seen to
follow from two facts: (1) Any stable matching can be returned by an algorithm
that examines edges greedily by magnitude, adding them to the matching if
the vertices involved have not yet been matched (the particular stable match-
ing produced depends on the procedure for breaking ties between equal-weighted
edges), and (2) Any greedy solution to the maximum weighted matching problem
is within a factor of two of the optimal solution. This argument holds generally,



7

even for non-bipartite graphs. Figure 1(a) provides an example of a graph where
this bound is achieved, showing that the bound is tight.

Observation 2 In vertex labeled graphs the social utility of any stable matching
is at least one-half of the social utility of the optimum matching.

This is a consequence of Theorem 2 (see Section 5 for further discussion).
Again, Figure 1(b) provides an example of a graph where this bound is achieved.

Observation 3 In asymmetric edge-labeled graphs, the social utility of the stable
matching can be arbitrarily bad compared with the socially optimal matching.

Consider the case in Figure 1(c) – the utility received by agent B from being
matched with Agent D is arbitrarily high, but the pair is not part of the stable
matching, so the loss in utility can be unbounded. Again this argument holds
for non-bipartite graphs as well.

These are worst-case constructions. A natural question is what the price
of anarchy is like in realistic graphs with different distributions over utilities.
We examine several different distributions of utilities within the three models
described above, and also consider different graph structures in order to get a
sense of the potential practical implications of these price of anarchy results. We
generate random graphs of the different types described above, with randomly
sampled utilities, and compute both the maximum-weighted stable matching
(the socially optimal matching) and a stable matching using the Gale-Shapley
algorithm (in all cases considered here, except one described in more detail below,
the proposing side does not affect the outcome in expectation because preference
distributions are symmetric).

Figure 2 shows that when utilities are randomly distributed according to two
common distributions (exponential and uniform, although this result seems to
be robust across many different distributions), the social loss due to stability
is not particularly high in any of the three models we describe above. This is
not surprising for vertex labeled graphs – since any person in the matching will
contribute the same to the total utility regardless of whom they are matched with
(for example, every perfect matching is socially optimal). As the average degree
of each vertex increases, the number of agents getting matched increases, and
the ratio quickly reaches 1, because all stable matchings become perfect at some
point. However, the result is considerably more surprising for the other two cases,
particularly for asymmetric edge-labeled preferences. The only case in which the
ratio goes below 0.9 is for exponentially distributed utilities with asymmetric
edge-labeled preferences (the ratio stops declining significantly beyond degree
10). For asymmetric edge labeled graphs, it makes sense that the ratio declines
as the degree of the graph gets larger, because it becomes possible to construct
matchings that are socially much better. Our experiments show that the value
of the optimal matching grows quickly (since it has more options available),
while the value of stable matching grows slowly (since it is hampered by the
stability constraint). The actual high percentage is quite surprising given that
in theory, the ratio could be arbitrarily bad. The uniform distribution ratios are



8

2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

Degree

R
at

io
 o

f s
ta

bl
e 

to
 o

pt
im

al
 m

at
ch

in
g

 

 

Asymmetric exponential
Asymmetric uniform
Symmetric exponential
Symmetric uniform
Vertex−labeled exponential
Vertex−labeled uniform

Fig. 2. Average ratio of the realized stable matching to the maximum weighted match-
ing in three different preference models when utilities are sampled at random from
exponential and uniform distributions with the same mean (0.5: the rate parameter
is 2 for the exponential and the support of the uniform is [0, 1]). Reported values are
averaged over 200 runs. There are 100 agents on each side of the matching market in
all cases. The X axis shows the degree of each node. Note that the ratio is very high,
almost never dropping below 85%, even in individual runs.

generally higher than those for the exponential distribution because the uniform
distribution enforces a compression in the range of high utilities by capping
utilities at 1.

Some additional empirical results are presented in Appendix A. They show
that the results above are not particular to random bipartite graphs, but also
hold for a variety of common networks, like preferential attachment networks and
small-world networks. “Unbalancing” the network by making one side’s range
of utilities significantly higher than the other’s can lead to a higher price of
anarchy. Finally, it is worth noting that the price of anarchy is not the only
important measure – for example, we show in the Appendix that increasing the
heterogeneity of tastes can lead to a higher price of anarchy, but increased utility
for everyone.

5 Improving Social Outcomes

In this section, we consider how to improve the quality of stable matchings. We
consider the addition of a switching cost to the mechanism so that an agent
would have to pay in order to deviate from the current matching. We find that
it is possible to improve the quality of social outcomes substantially by making
only small changes to the incentives of the agents, and thus without drastically
changing the nature of the matching market. An approximate equilibrium is a
solution where no agent gains more than a small factor in utility by deviating. In
the case of matching, we consider the following notion of approximately-stable
matching.



9

Definition 1. A matching is called α-stable if there does not exist a pair of
agents not matched with each other who would both increase their utility by a
factor of more than α by switching to each other.

If α = 1, then this is exactly a stable matching. An α-stable matching also
corresponds to a stable solution if we assume that switching has a cost. In other
words, in the presence of switching costs, the set of stable matchings is simply
the set of α-stable matchings without switching costs.

How does increasing α improve the quality of stable matchings? We are
specifically concerned with the price of stability [19], which is the ratio of the
utility of the best stable matching relative to the optimum matching. Much
recent work in network design and routing [20, 21] has considered the price of
stability in various contexts. It is especially important from the point of view of
a mechanism designer with limited power, since it can compute the best stable
solution and suggest it to the agents, who would implement this solution since it
is stable. Therefore, the price of stability captures the problem of optimization
subject to the stability constraint.

Below we present various theoretical bounds, showing that for symmetric
edge-labeled graphs, there always exists an α-stable matching with utility of at
least α

2 OPT (where OPT is the value of the optimum matching), and that in
vertex-labeled graphs, there always exists an α-stable matching with utility at
least α

1+αOPT. We provide a constructive algorithm for finding such an α-stable
matching. This shows that by increasing α, we can implement much better stable
solutions than for α = 1, and decrease the price of stability. Empirical results
using this algorithm show an even more dramatic improvement than predicted
by the theoretical bounds. Figure 3 shows that for α = 1.1 we already obtain a
tremendous improvement in the quality of stable matching, essentially obtaining
stable matchings that are as good as a matching with maximum utility. This
means that adding a switching cost as small as five or ten percent can make an
enormous difference in the quality of stable matchings. In many situations, it
is reasonable to believe that a central controller can compute a good α-stable
matching, assign agents to that matching, and only allow them to deviate on
payment of the switching cost.

For edge-labeled graphs, in the presence of switching costs of a factor α, the
price of anarchy is at most 2α, but the price of stability is at most 2/α. This
means that as we increase α, there begin to be stable matchings that are worse,
but there always exists a stable matching that is close to optimal. For α = 1,
these bounds coincide, giving us the result that all stable matchings are within
a factor of 2 from the maximum weight matching. For α = 2, this gives us the
easily verifiable fact that the optimum matching is 2-stable.

Theorem 1. Let OPT be the value of the socially optimal matching. In any
undirected edge-labeled graph, there exists an α-stable matching whose social util-
ity is at least α

2 OPT. Furthermore, the social utility of any α-stable matching is
at least 1

2αOPT.

Our proofs appear in Appendix B.1 and B.2.



10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Alpha

R
at

io

 

 
n=10
n=20
n=50
n=100

Fig. 3. Ratio of the social utilities of best α-stable and socially optimal matchings
as a function of α when the matchings are constructed according to our algorithm
in symmetric edge-labeled graphs. The dramatic increase between α = 1 and α =
1.1 shows that introducing even small switching costs has the potential to produce
significant social benefits. Preferences were sampled uniformly at random on [0, 1].

Similar results hold for vertex labeled graphs. The price of anarchy is at most
1 +α and the price of stability is at most (1 +α)/α. For α = 1 this gives us the
observation in Section 4 (notice that while it is easy to show a correspondence
between stable matchings for edge-labeled and vertex-labeled graphs, the same
does not hold for α-stable matchings).

Theorem 2. Let OPT be the value of the maximum-weight perfect matching. In
any vertex-labeled graph, there exists an α-stable matching whose social utility is
at least α

1+αOPT. Furthermore, the social utility of any α-stable matching is at
least 1

1+αOPT.

6 Convergence to Stability

While many good algorithms exist for computing stable matchings (Gale-Shapley
being the most standard), we would like to consider more natural dynamics for
forming stable matchings. Such dynamics are likely to occur in practice if there
were no central planner to compute a matching for the agents, and if instead
the agents tried to do what was best for themselves in a decentralized manner.
In such cases, how likely is it that realistic algorithms yield stable outcomes?

We study the convergence properties of a particular decentralized partner-
switching algorithm in which the vertices on a graph are sorted randomly and
then the following algorithm is repeated until convergence: for each vertex, in
the sorted order, find the best partner that vertex can be matched with. The
vertex can be matched with a partner if an edge connects them and the deviation
is utility-increasing for both the vertex and its new partner. The best partner is



11

the one of these that yields maximum utility for this vertex. Add this new pair
to the matching, removing any pairs that this vertex or its new partner were
previously connected to.

This algorithm captures the intuitive notion that, in a society of agents, pairs
take turns deviating from the current matching if it is in their interest to do so.
We call each iteration through all agents a phase. Instead of iterating through
all the agents in a fixed order, we could instead pick random agents to deviate
at every step, as in [14]. None of our results change significantly in this case.

Theorem 3. This algorithm converges to a stable matching after at most n
phases in vertex-labeled and symmetric edge-labeled graphs.

The simple decentralized algorithm described above converges to a stable
matching in time O(n2), since each phase takes linear time. Notice, however,
that if instead of switching to its best partner, the agents simply switched to
a random improving partner, the same argument would guarantee convergence
to a stable matching in an expected time of O(n2d), where d is the maximum
degree of the graph. In practice (see Figure 7 in Appendix C), on random utility
distributions, the convergence time for vertex-labeled graphs does indeed appear
to be quadratic, but the convergence time for symmetric edge-labeled graphs
seems linear. We conjecture that the algorithm converges in expected linear time
for these graphs, perhaps because good edges for one node are in expectation
also good for the other node in the edge, because of the symmetric preferences.
Asymmetric edge-labeled. While Theorem 3 guarantees convergence for the
vertex-labeled and symmetric edge-labeled utilities, this is not the case for asym-
metric edge-labeled graphs. Unfortunately, in this case there are easy examples
where this algorithm can cycle. In our experiments, however, for small n (the
number of nodes on each side) the algorithm converged to a stable matching
on all but a small percentage of cases, showing that the bad scenarios are not
“typical.” As n gets larger, this algorithm converges more and more rarely (ap-
proximately 2% less for every additional node), with convergence essentially
non-existent for n = 70.

7 Discussion

This paper explores the prices of anarchy and of stability in matching markets.
We demonstrate that even though the price of anarchy can theoretically be high,
when utilities are randomly sampled, the loss in social welfare from strategic be-
havior is limited. This result encompasses many different graph and preference
structures, and is experimentally robust. While the downside is limited, even this
downside can be alleviated: a significant improvement in social welfare can be ob-
tained by suggesting a good matching and requiring agents to pay small switching
costs to deviate. We show this theoretically using an algorithm for construct-
ing approximately stable matchings, and then demonstrate that the algorithm
is effective in experiments. We also show that simple greedy partner switching
algorithms can converge quickly to stable matchings in some graph structures.



12

From a practical perspective, future work should include understanding real-
world utility distributions and how they affect the social outcomes of match-
ing as compared to random distributions of utilities. From a mechanism design
perspective, it would be interesting to explore whether agents would choose to
participate in a switching-cost based, designer-suggested matching mechanism.

References

1. Roth, A.E., Peranson, E.: The redesign of the matching market for American
physicians: Some engineering aspects of economic design. American Economic
Review 89(4) (1999) 748–780

2. Abraham, D., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In: Proc. of ACM Conf. on Elec-
tronic Commerce, ACM Press New York, NY, USA (2007) 295–304

3. Roth, A.E., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monograph Series. Cambridge Uni-
versity Press, Cambridge, UK (1990)

4. Roth, A.E., Xing, X.: Jumping the gun: Imperfections and institutions related to
the timing of market transactions. The American Economic Review 84(4) (1994)
992–1044

5. Immorlica, N., Mahdian, M.: Marriage, Honesty, and Stability. In: Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. (2005)

6. Dawande, M., Kumar, S., Mookerjee, V., Sriskandarajah, C.: Maximum Com-
monality Problems: Applications and Analysis. Management Science 54(1) (2008)
194

7. Abdulkadiroglu, A., Pathak, P., Roth, A.: The New York City High School Match.
American Economic Review 95(2) (2005) 364–367

8. Abdulkadiroglu, A., Pathak, P., Roth, A.: Strategy-proofness versus Efficiency in
Matching with Indifferences: Redesigning the NYC High School Match. American
Economic Review (2009) To appear.

9. Becker, G.: A Treatise On The Family. Family Process 22(1) (1983) 127–127

10. Jovanovic, B.: Job Matching and the Theory of Turnover. The Journal of Political
Economy 87(5) (1979) 972

11. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 69(1) (1962) 9–15

12. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the ”optimal” stable
marriage. Journal of the ACM (JACM) 34(3) (1987) 532–543

13. Thaler, R., Sunstein, C.: Nudge. Yale University Press (2008)

14. Ackermann, H., Goldberg, P., Mirrokni, V., Roglin, H., Vocking, B.: Uncoordinated
two-sided markets. In: Proceedings of the 9th ACM Conference on Electronic
Commerce (EC). (2008)

15. Roth, A., Vande Vate, J.: Random Paths to Stability in Two-Sided Matching.
Econometrica 58(6) (1990) 1475–1480

16. Goemans, M., Li, L., Mirrokni, V., Thottan, M.: Market sharing games applied
to content distribution in ad hoc networks. IEEE Journal on Selected Areas in
Communications 24(5) (2006) 1020–1033

17. Mirrokni, V.: Approximation Algorithms for Distributed and Selfish Agents. PhD
thesis, Massachusetts Institute Of Technology (2005)



13

18. Das, S., Kamenica, E.: Two-sided bandits and the dating market. In: Proc. IJCAI,
Edinburgh, UK (August 2005) 947–952

19. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: Proc.
FOCS. (2004) 295–304

20. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network
design with selfish agents. In: Proceedings STOC, ACM Press New York, NY,
USA (2003) 511–520

21. Christodoulou, G., Koutsoupias, E.: On the Price of Anarchy and Stability of
Correlated Equilibria of Linear Congestion Games. Lecture Notes In Computer
Science 3669 (2005) 59

22. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439) (October 1999) 509–512

23. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature
393(6684) (1998) 440–442



14

Appendices

A Further Empirical Results

Figure 4 shows that the high ratios of the utilities of stable to socially optimal
matchings shown in Figure 2 are not an accident of using random bipartite
graphs. In non-bipartite graphs that are known for their power in modeling
social and engineering systems, namely preferential attachment networks [22]
and small-world networks on a lattice [23], the results are similar, with the
computed stable matching achieving, on average, above 95% of the value of
the socially optimal matching. This result also holds in lattice networks and in
networks defined in Euclidean space where the utility of a matching for any pair
is the inverse of the distance between them.

Thus it appears that in random graphs, stable matchings attain a very high
proportion of the maximum social utility. There are however some preference
structures for which this does not hold. Consider a case where the utilities re-
ceived by one side of the market are much higher than utilities received by the
other side. In addition, suppose that the side with lower utilities is more power-
ful, and is therefore able to choose the stable matching optimal for those on that
side of the market (these situations could correspond to many in real life – for
example, employers are more powerful than employees). This power structure
is implemented by running the Gale-Shapley algorithm with the more powerful
side being the side that proposes, which results in the best stable matching for
the proposing side. In this case the ratio of utilities can be substantially lower,
as seen in Figure 5. In other words, if we only care about the welfare of one side
of the market, there can exist stable matchings much worse than the optimal
ones (although still much better than the theoretical bound of one-half).

When anarchy is good The price of anarchy is not the only important measure.
Our experiments so far reveal that the price of anarchy is lower for vertex la-
beled graphs, especially as the degree grows. This is mostly because any perfect
matching is socially optimal. As more and more vertices get included in the
matching, we get closer and closer to the socially optimal matching. But this
is essentially a case of scarce resources, and no synergies – the average utility
received by everyone in a perfect matching is the value of the average vertex
– there is no chance to make everyone better off because some pairs work bet-
ter together or like each other more. If preferences were more heterogeneous,
there would be more such synergies that could be exploited. In order to explore
this further, we experiment with varying the level of homogeneity in preferences
by making preferences a convex combination of vertex-labeled and asymmetric
edge-labeled preferences, while holding the average value constant. In this case
the value received by u from matching with v is given by λw(v)+(1−λ)z where
both w(v) and z are sampled from exponential distributions with mean 0.5, but
w(v) is an intrinsic feature of the node v which is the same for any u that is
connected to v, while z is idiosyncratic (independently sampled for each u that



15

2 4 6 8 10 12 14 16 18 20
0.95

0.96

0.97

0.98

0.99

1

Degree

R
at

io
 o

f s
ta

bl
e 

to
 o

pt
im

al
 m

at
ch

in
gs

 

 
Preferential attachment
Small world

Fig. 4. Average ratio of the realized stable matching to the maximum weighted match-
ing with two different non-bipartite graph structures: (1) small world networks and (2)
preferential attachment networks of different average degree, both with 100 nodes.
Utilities are sampled independently from an exponential distribution with mean 0.5.
Results are averaged over 200 runs.

is connected to v). Then λ represents the degree of homogeneity of preferences.
Figure 6 shows that, while the ratio of stable-to-optimal utilities goes up dra-
matically as preferences approach pure homogeneity, this is accompanied by a
decline in average utility received by each individual. This indicates that having
some heterogeneity in preferences is a good thing for society: even if it leads to
a higher price of anarchy, everyone is better off than they would be in a lower
price-of-anarchy society.

B Proofs

B.1 Proof of Theorem 1

Statement: Let OPT be the value of the socially optimal matching. In any
undirected edge-labeled graph, there exists an α-stable matching whose social
utility is at least α

2 OPT. Furthermore, the social utility of any α-stable matching
is at least 1

2αOPT.

Proof. Denote by w(M) the weight of a matching M . First, notice that the
socially optimal matching is simply the maximum weight matching in this model,
since the social welfare of a matching is exactly twice its weight. Let OPT denote
the weight of the maximum weight matching, and prove that the weight of α-
stable matchings obeys the lower bounds mentioned in the theorem statement.



16

2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

Degree of each vertex

R
at

io
 o

f s
ta

bl
e 

to
 o

pt
im

al
 m

at
ch

in
gs

 

 
n=20
n=50
n=100

Fig. 5. Average ratio of the realized stable matching to the maximum weighted match-
ing when the utilities received by those on the less “powerful” side of the market are
10000 times as high as those received by those on the more powerful side, but the stable
matching is the one optimal for the more powerful side. Results are averaged over 200
runs. Utilities are exponentially distributed.

We first prove that for every α ≥ 1, every α-Stable Matching in G is of weight
at least OPT

2α .

LetM be an α-stable matching inG, andM∗ be a maximum-weight matching
in G. Let e1 = (u, v) be an arbitrary edge in M∗ \M . Since M is an α-stable
matching, there must be either an edge e2 = (u,w1) ∈ M or an edge e3 =
(v, w2) ∈M such that w(e1) ≤ αw(e2) or w(e1) ≤ αw(e3) (if neither were true,
then u and v could match to each other and gain more than a factor of α in
utility). Therefore for every edge e in M∗, either e ∈M , or there is an edge e′ of
M sharing a node with e such that w(e) ≤ αw(e′). Since at most two edges of
M∗ can share a node with the same edge e′ of M (because M∗ is a matching),
this means that if we sum the above inequalities, we obtain w(M∗) ≤ 2α ·w(M),
as desired.

We now prove that there always exists an α-stable matching M such that
w(M) ≥ α

2w(M∗) by giving an algorithm for finding such a matching:

Set M = M∗

Sort the edges of G in order of decreasing weight.
For each edge e = (v1, v2) ∈ G in this order:

Let e1, e2 be edges to which v1, v2 are incident in M , respectively (if they
exist)

If w(e)
α is greater than both w(e1) and w(e2):
Remove e1 and e2 from M .
Add e to M .

End If
Loop



17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

Degree of homogeneity of preferences

R
at

io
 o

f s
ta

bl
e 

to
 o

pt
im

al
 m

at
ch

in
g

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

A
ve

ra
ge

 p
er

−
ag

en
t u

til
ity

Ratio of stable to optimal
Avg. utility per agent

Fig. 6. The ratio of the realized stable matching to the maximum weighted matching
(going up from left to right, left Y axis) and the average utility received by each
agent (going down from left to right, right Y axis) as a function of the degree of
homogeneity of preferences (0 being completely heterogeneous, i.e. asymmetric edge-
labeled, and 1 being completely homogeneous, i.e. vertex-labeled). The graphs are
bipartite, containing 100 nodes on each side, and the degree of each vertex is 10. The
average utility of any edge remains 0.5 for each setting. Results are averaged over 200
runs.

This algorithm considers all edges in the graph in order of decreasing weight,
and if the two nodes in the edge can gain a factor of α utility by deviating to
this edge, then we let them. If an edge e1 does not exist, then for the new edge
e to be added to the matching, all we need is that w(e)

α > w(e2). Call the edge
e = (v1, v2) in the algorithm as the edge being currently examined. To prove
correctness, we must show two facts:

(i) The algorithm results in an α-Stable Matching.
(ii) The resulting matching is of weight at least w(M∗)α

2 .

To begin the proof of (i), notice that M is a matching. This is simply because
whenever we add an edge (u, v) to M , we also remove the edges incident to the
nodes u and v. Since we start with a matching M∗, we know that M is a matching
at every point in the algorithm.

By Lemma 1, we know that if an edge e = (u, v) is in the matching M
immediately after it is examined, then it will not be removed from M later.
Notice also that if edge e = (u, v) is not in the matching M after it is examined,
then it will never be added to M later in the course of the algorithm, because
the algorithm only adds edges to the matching at the time that it is examining
them. Therefore, the final matching M consists exactly of edges that are kept in
M at the time the algorithm examines them.



18

To show that the returned matching is α-stable, suppose to the contrary that
there is an instability in the final matching M , i.e., an edge e1 = (u, v) 6∈M such
that w(e1) > αw(e2) and w(e1) > αw(e3), where e2 and e3 are the edges of M
incident to u and v (which may not exist). Since e1 is not in the final matching
M , it could not have been included in the matching when it was examined. This
implies that at this time there was an edge e′ ∈ M incident to (without loss of
generality) u, with w(e1) ≤ αw(e′). This edge e′ cannot still be in the matching
M at the end of the algorithm’s execution, since otherwise e1 would not form an
instability. Therefore, the algorithm must have removed edge e′ at a later point.
The only reason why edge e′ would be removed is if an edge e′′ were added to
the matching, with w(e′′) > αw(e′) ≥ w(e1). Since the algorithm considers the
edges in order of decreasing weight, however, this edge e′′ could only have been
added before the algorithm examined edge e1, and so we have a contradiction.

We now prove (ii). At each examination in the algorithm, one of two things
can occur. The trivial case is that no edge is formed so no change occurs in M .
The other case, in which a new edge e is added to the matching, adds an edge
of weight w(e) to M while removing at most 2 · w(e)

α . The ratio of the new edge
weight to the old edges weight is therefore w(e)

2·w(e)
α

= α
2 . By Lemma 1, once an edge

is added to the matching M by the algorithm, it is never removed again, so the
total weight of the final matching M is at least α

2w(M∗), as desired, completing
the proof of Theorem 1.

Lemma 1. If an edge e = (u, v) is in the matching M immediately after it is
examined, then it will not be removed from M later.

Proof. Suppose to the contrary that e = (u, v) ∈M directly after it is examined,
but is no longer in M at a later point. Without loss of generality, assume that e
was removed from M because some edge e′ = (u,w) was added. For this to occur,
it must be that w(e′) > αw(e). But since α ≥ 1, and the algorithm examines
the edges in order of decreasing weight, then this addition of edge e′ could only
have occurred before the algorithm examined e, a contradiction.

B.2 Proof of Theorem 2

Statement: Let OPT be the value of the maximum-weight perfect matching. In
any vertex-labeled graph, there exists an α-stable matching whose social utility
is at least α

1+αOPT. Furthermore, the social utility of any α-stable matching is
at least 1

1+αOPT.

Proof. For an edge e = (u, v), define w(e) = w(u) + w(v), and denote by w(M)
the weight of a matching M . First, notice that the socially optimal matching
is simply the maximum weight matching in this model, since the social welfare
of a matching is exactly equal to its weight. Therefore, we let OPT denote the
weight of the maximum weight matching, and prove that the weight of α-stable
matchings obeys the stated lower bounds. We first prove that for every α ≥ 1,
every α-Stable Matching in G is of weight at least 1

1+αOPT.



19

The proof is similar to the proof of Theorem 1, but some extra details are
necessary. Let M be an α-stable matching in G, and M∗ be a maximum-weight
matching in G. Let e1 = (u, v) be an arbitrary edge in M∗ \M . Since M is α-
stable, there must be either an edge e2 = (u,w1) ∈M or an edge e3 = (v, w2) ∈
M such that w(u) ≤ αw(w2) or w(v) ≤ αw(w1) (otherwise u and v could match
to each other and gain more than a factor of α in utility). We call this edge a
“witness” for e1, since it prevents e1 from being an instability for the α-stable
matching M . Therefore for every edge e1 in M∗, either e1 ∈M , or there is such
a witness edge e of M sharing a node with e1.

The structure of vertex labeled graphs allows us to obtain better bounds than
we could for edge-labeled graphs. We prove that M has high weight by comparing
the weight of edges in M∗ with the edges that act as their witnesses. As in
Theorem 1, if the edge is also in M , then the weight does not change. Consider
the case where e = (u, v) ∈ M acts as a witness for two edges eu = (u, v′) and
ev = (v, u′) of M∗. In this case, w(eu) +w(ev) = w(u) +w(v) +w(u′) +w(v′) ≤
w(u) + w(v) + αw(u) + αw(v) = (1 + α)w(e). If e only acts as a witness for
eu, then we know that w(eu) = w(u) + w(v′) ≤ w(u) + αw(v) ≤ αw(e). The
edge e cannot act as a witness for more than two edges, since M∗ is a matching,
and so e can only be touching two edges of M∗. Therefore, in the worst case
w(M∗) ≤ (1 + α)w(M), as desired.

To prove the other statement in the theorem, we construct an α-stable match-
ing with weight at least α

1+αw(M∗). We use the same algorithm as in the proof of
Theorem 1, but we must sort the edges using a more complicated ordering than
simply by the sum of their node weights. Specifically, we define a new notion
of edge weight by ρ(e) = w(u) · w(v) for an edge e = (u, v). We then run the
algorithm in the proof of Theorem 1, with the weight of an edge e being ρ(e).
In the rest of this proof, we use the same notation as in the proof of Theorem
1. We must show that:

(i) This algorithm results in an α-Stable Matching.
(ii) The resulting matching is of weight at least w(M∗)α

1+α .

Consider the definition of what it means for a node u to be α-stable in a vertex
labeled graph. It states that if (u, v) ∈ M , then there cannot be an edge (u, v′)
with w(v′) > αw(v). This is equivalent to stating that w(u)w(v′) > αw(u)w(v),
which is the same as saying that ρ(u, v′) > αρ(u, v). Therefore, a vertex labeled
graph is α-stable exactly when the same edge labeled graph is α-stable, with
edge weights being ρ(e). Since we know that our algorithm produces an α-stable
matching for edge labeled graphs with edge weights ρ(e), then it must also
produce an α-stable matching for our vertex labeled graph.

We now prove (ii). At each examination in the algorithm, one of two things
can occur. The trivial case is that no edge is formed so no change occurs in M .
The other case, in which a connection is formed, adds an edge e = (u, v) instead
of edges eu = (u, v′), ev = (v, u′) such that ρ(e) > αρ(eu) and ρ(e) > αρ(ev).
By our definition of ρ, this implies that w(v) > αw(v′) and w(u) > αw(u′). The
ratio of the new edge weight to the old edge weight is (w(u) + w(v))/(w(u) +



20

w(v) + w(u′) + w(v′)) ≥ 1/(1 + 1
α ) = α

1+α . By Lemma 1, once an edge is added
to the matching M by the algorithm, it is never removed again, so the total
weight of the final matching M is at least α

1+αw(M∗). This concludes the proof
of Theorem 2.

B.3 Proof of Theorem 3

Statement: The algorithm in Section 6 converges to a stable matching after at
most n phases in vertex-labeled and symmetric edge-labeled graphs.

Proof. First we show the result for vertex-labeled graphs. Let S be the set of
nodes on one side of the matching with maximum weight w (there can be many
such nodes, since the weights of nodes may not be distinct). Define v to be the
node from S such that after the first phase of the algorithm, v has a partner u
with the largest weight w(u).

If out of all the neighbors of v, u has the largest weight, then the matching
between v and u will always be stable from this point until the end of the
algorithm’s execution, since v and u are each others’ highest weighted neighbors.
This means we can simply think of v and u as removed from the graph, since
they will not affect the algorithm in future phases. Otherwise, we can assume
that there exists a neighbor u′ 6= u of v with w(u′) > w(u). When we consider v
in phase 1, v would like to connect to u′ over u. The only reason why u′ would
not be matched with v is if it were already matched to a node v′ ∈ S. But this
cannot be by our choice of node v.

Therefore, we know that during each phase, we can remove a pair of nodes
(v, u) and their incident edges from the graph (since this pair will always be
stable and matched during the rest of the algorithm). After at most n phases,
the resulting matching will be stable (where n can be the size of the smaller side
of the matching).

The proof of convergence for symmetric edge-labeled graphs is similar, and
is essentially the same as in [14]. Consider an edge (u, v) of maximum weight
in the graph. After the first phase, u will be matched with v (because u prefers
v to all its other neighbors and v prefers u to its other neighbors), and we can
remove v and u from the graph. The rest of the argument is the same as above.

C Empirical Convergence Results



21

20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

Number of vertices per side (degree = x/5)

N
um

be
r 

of
 s

w
itc

he
s 

 

 
Vertex−labeled graphs
Symmetric edge−labeled graphs

Fig. 7. Average number of switches the greedy algorithm makes before the resulting
matching is stable for vertex-labeled and symmetric edge-labeled graphs. Note the
quadratic growth for vertex-labeled and linear growth for edge-labeled graphs. Utilities
are sampled independently from an exponential distribution with mean 0.5. Results are
averaged over 200 runs.


